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This paper concerns the effects of topographic changes upon the dispersion of 
contaminants in rivers. Exact analytical results arc derived for the time-of-arrival, 
temporal variance and skewness far downstream of a sudden contaminant release. 
It is demonstrated that there can exist optimal discharge sites. such that a t  all 
positions far downstream the maximum concentrations are minimized. 

1. Temporal instead of longitudinal moments 
Much work on contaminant dispersion in shear flows is based upon Aris’ (1956) 

method of moments. This powerful method replaces the full advection-diffusion 
equation by a hierarchy of equations for successive longitudinal moments of the 
contaminant distribution. For most practical purposes an adequate description of the 
concentration can be obtained with just the first few longitudinal moments (e.g. the 
area, centroid and variance). An important aspect of Aris’ (1956) work is that it gives 
a rigorous justification, a t  large times after discharge, for Taylor’s ( 1953) heuristic 
approach to shear dispersion. 

Although the flow can be time-dependent (Aris 1960), there is an intrinsic 
restriction in the method of moments that the flow must be longitudinally uniform. 
For varying channels there is coupling between all the longitudinal moments, and, 
unless the changes in the channel are very gradual, there is no meaningful hierarchy. 
The few theoretical calculations that have been attempted for flows that vary rapidly 
along their length (Fischer 1969; Smith 1983) have been heuristic, in the spirit of the 
work of Taylor (1953). 

Tsai & Holley (1978) pointed out that moments with respect to time provide a 
tractable alternative to spatial moments for the theoretical study of contaminant 
dispersion. Given that longitudinal moments can be used even when the flow is 
time-dependent, it  is natural to enquire whether temporal moments remain tractable 
when the flow is longitudinally non-uniform. The present paper shows that this is 
indeed the case. It is confirmed that a t  large distances downstream of a contaminant 
release, the upstream memory character of the dispersion process is exactly as 
inferred by the author (Smith 1983). 

An important bonus of the method of calculation is that from the values of just 
two functions i t  is possible to compare the relative merits of all possible discharge 
sites. For straight channels the peak pollution level a t  a fixed monitoring position 
can always be improved by displacing the discharge site slightly further upstream 
(Smith 1981 ; Daish 1984). However, it is demonstrated in the final section of this 
paper that, when the channel varies markedly, there can exist optimal discharge sites 
which are better than all nearby sites upstream, downstream or across the flow. It 
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is only by a substantial upstream relocation of the discharge that the peak 
concentration level a t  the monitoring position can be further improved. 

2. Moment equations and some notation 
I n  a typical stream, with water depth much less than the channel breadth, Fischer 

(1967) showed that the shear dispersion associated with the lateral variations is 
greatly in excess of the vertical-shear dispersion coefficient. This in turn is an order 
of magnitude greater than the longitudinal turbulent eddy diffusivity (Elder 1959). 
Thus for simplicity we shall neglect longitudinal diffusion, average out the vertical 
structure, and take the advection-diffusion equation to have the form 

m, m2 h(a, c + u1 a, c) -ay - hK aY c = m, m2 hq, (2.la) 

hKayC=O on y = y L , y R ,  ( 2 . l b )  

(2 .2 )  
Here (2, y) are curvilinear coordinates aligned along and across the flow (see figure 
l), m,(x, y), mr2(x, y) are metric coefficients, c ( x ,  y, t )  is the contaminant concentration, 
h(x, y) the water depth, m1 ul(x, y) the depth-averaged flow velocity (u, is the rate 
of crossing of x-contours), K(X, y) the transverse dispersion coefficient, q the depth- 
averaged source strength, and yL, yR denote the left and right banks of the channel. 
In  the absence of inflows or recirculation, the banks are streamlines, and so yL, yR 
are constants independent of x. The alignment of the x-coordinate with the flow 
ensures that there are no crossflow terms v aY c. 

It is the neat form of the advected rate of change (a,+ula,) that makes it 
convenient to denote the velocity by m, u,. Similarly, an m, factor is included in the 
definition of area averages : 

(2: ) 
with 

and 
a,(m, m2 hu,) = 0. 

r L m l m 2 h f d y  

J;;ml m2 h dy. 
f= Y R  (2.3) 

Far downstream of the discharge the contaminant will have become well mixed 
across the stream and will be carried along a t  the area-averaged velocity GI. Thus 
to a first approximation the time of arrival a t  x of a contaminant released a t  t = 0, 
x = xo is 

To suppress the occurrence of secularly growing terms, we define temporal 
moments c ( j ) ( x ,  y) relative to this time displacement 7 ( x )  : 

Successive temporal moments of the advection-diffusion equation (2.1) yield the 
hierarchy of equations 
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(2.6b) 
with 

If we assume that the discharge has the form 

h~i$,c( j )  = 0 on y = y L, YR. 

d Y )  S(z - xo) (2.7) 

(i.e. a sudden release at x = zo, t = 0 with cross-stream profile p(yo), then the 

FIGURE 1. Flow-following coordinate system for a meandering channel. 

occurrence of the q(" forcing term on the right-hand side of ( 2 . 6 ~ )  can be replaced 
by the starting conditions (Tsai & Holley 1978, equation 20) 

u1 

The form of the x-derivative term in ( 2 . 6 ~ )  leads 
average 

J"" m, m2 hu1.f dY 

If' = f m, m2 hu, dy . 

If we make the decomposition 

cU) = [cV)] +A@, 

us to define the flux-weighted 

(2.9) 

(2.10) 

then the area averages of the moment equations (2.6), (2.8) yield the useful sequels 

(2.11) 
u1 5-20 

6 

(2.12) 

F L H  
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3. The dosage 
The zero moment d 0 ) ( x ,  y) is the integrated total concentration experienced at tjhe 

location (x, y). For contaminants with accumulative effects, this dosage is of 
importance in its own right. Here we regard do) as being only one item of information 
concerning the time evolution of the concentration a t  (2, y). 

Using the notation (2.10) in (2.6), (2.8), we obtain the advection4iffusion equation 

(3.1 a) 

with 

and 

(3.1 c) 

There is zero net discharge associated with the starting conditions ( 3 . 1 ~ ) .  Thus, we 
can infer that  a t  large distances downstream the effect of cross-stream diffusion will 
be to make Ad0) smear out to zero, i.e. the dosage becomes uniform across the flow 
and independent of x. The transients decay exponentially fast on a diffusion 
lengthscale of order GB2/K.  

The total volume of contaminant released into the flow is 

Q = rLm1m2hqdyl  YR 
2-20 , 

while the volume flux of water along the channel is given by 

YL 
F = m, m2 hu, dy independent of x. (3.3) 

YR 

Thus the asymptotic value of the dosage can be written 

(3.4) 

This only depends on the volume of contaminant and the river flow rate, so is 
independent of either the discharge profile q(yo) or the discharge location xo. Hence 
it is only by reducing Q that  the dosages experienced far downstream can be 
ameliorated. By contrast, i t  is shown below that concentrations are functions of 
x, y, xo and q(yo) (i.e. the concentration depends upon the observation site, the 
discharge location and the detailed character of the discharge). 

4. Time of arrival 
Pursuing the analysis to the next temporal moment, we see from (2.12) with j  = 1 ,  

that, rather than needing the full solution Ado)  of (3.la-c),  i t  suffices that we can 
evaluate the integral 
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A general prescription for the evaluation of such integrals related to advectiondif- 
fusion equations is given in Appendix A. In the notation used in Appendix A this 
particular case corresponds to 

u(x,y) = Ado), M ( z , y )  = 0, N ( x , ~ )  = 1.  (4.2) 

Thus, following the general prescription, we are led to introduce an auxiliary function 
b = G-(x,  y) which satisfies the upstream advection equation 

- m , m , h u , ~ , G ~ - ~ ,  (4.3a) 

with 

and 
hKa,G- = 0 on y = yL, yR, 

[G-] = 0. 

(4.3 b) 

(4 .3c)  

The conditions (A 6, A 7 )  needed to derive the reduction formula (A 8) are satisfied. 
Thus we have the result 

- 

[c(l)] = [ G - A C ( ~ ) ] , ~ - [ G - A C ( ~ ) ]  = (e) - [G-AcCo)] .  (4.4) 
u1 50 

At large distances downstream of the discharge the last term tends to zero. 

contaminant at  x can be defined as 
Relative to the mean travel time (2.4), the flux-averaged time of arrival of the 

[TI=--(?%) [c'"] . 
[c'"] XO 

(4.5) 

Thus there is a tendency for a late arrival if the discharge profile q(yo) is weighted 
towards regions of positive G-. From the right-hand-side forcing terms in (4.3a), we 
can infer that G- is largest in the slowest-flowing part of the stream (see figure 2). 
Hence, in accord with physical intuition, releasing a contaminant in the slower-flowing 
part of the channel delays the arrival of the contaminant at  locations far downstream. 

To investigate the y-dependence of c(l), we again use the AcU) notation (2.10), and 
we consider the equation 

A d o ) - m 1 m 2 h A T ) ( < ) ,  U ( 4 . 6 ~ )  

with 

and 
hKay Ad1)  = 0 on y = yL, yR, 

Ad') = O at 2 = xo. 

(4.6b) 

( 4 . 6 ~ )  

At large distances downstream the Ad0)  forcing terms vanish. Thus we have the 
asymptote 

Ad1)  - [do)]  G+, (4 .7)  

where the auxiliary function G+(x, y) satisfies the downstream advection-diffusion 
equation 

m , m , h u , a , G + - ~ y ~ h K a  m2 ( 4 . 8 ~ )  



R. Smith 158 

with 

and 
k a y G +  = 0 on y = yL,yR, 

[G,] = 0. 

- 0 . 2 , "  I ! , I 1  I & , & I I  I I ~ I ~ ' ( ~  I t ' ]  

0 0.2 0.4 0.6 0.8 1 .o 
Position across flow y / B  

(4.8b) 

( 4 . 8 ~ )  

FICHJRE 2. Time-of-arrival function G ,  = G- for a longitudinally uniform 
channel with a triangular depth profile. 

The resulting asymptotic expression for the time of arrival (relative to  the mean 

&) - travel time (2.4)) is 
T = ~ ( 0 )  - (9) +G+(x, y). 

.zo 
(4.9) 

As was the case with its upstream counterpart, G, tends to  be positive where the flow 
rate is small. Thus again we have a physically obvious implication: that  the 
contaminant arrives later for observation sites (x, y) in the slower-moving part of the 
flow. 

For subsequent use we note that with 

a ( x , y )  = G+, b(z,y) = G-, i.e. M =  N = 1 ,  (4.10) 

the prescription given in Appendix A yields the result (A 8)) 

(4.11) 
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5. Shear-dispersion coefficient 
Substituting the asymptotic result (4.7) into (2.12) withj  = 2, we have 

[c(')] - 2[d0)] 3 dx' + constant, 
xo u1 

where the constant is associated with transient 

defined : 
For the flux-averaged concentration distribution 

contributions. 
the temporal variance can be 

Thus at  large distances downstream we infer from (4.5), (5.1) that 

CZ, - 2 2 dx' + constant. (5.3) 

Making allowance for the disparity between spatial and temporal measures of the 
contaminant evolution, we can interpret (5.3) as defining the local shear-dispersion 
coefficient 

Dloc = q G +  (5.4) 

(Smith 1983, equation 6.4). The important features of this generalization of Taylor's 
(1953) classic result are that there is an upstream memory, and that D,,, can be 
negative, i.e. higher averaged concentrations can be experienced further downstream 
when there are marked flow changes (Fukuoka & Sayre 1973). 

6. Influence of the discharge profile on the pollution level 
For a longitudinally uniform channel, Smith (1981) and Daish (1984) have shown 

that the precise discharge distribution q(yo)  can affect the concentrations over a 
substantial distance downstream of the discharge (i.e. several diffusion lengthscales). 
The implication is that the constants in equations (5.1), (5.3) can be quite large, and 
need to be evaluated. 

Returning to (4.6a-c), we write 

Ad1) = [do)] G, + W), 
where the decaying contribution 6d1) satisfies the equation 

with 

and 
(6.2b) 

( 6 . 2 ~ )  

In order to improve upon (5.1), what we need to know is the value of the integral 

(6.3) 
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Again we follow the prescription given in Appendix A with 

U(Z, y) = 6d1), M ( x ,  y) = Ad0) ( 1 - 1  ;J N(x,y) = 1. (6.4) 

Hence once more the appropriate upstream function is G-(x, y) (4.3)), and (A 8) yields 

What has been gained is that  an integral involving 6d1) has been replaced by an 
integral involving Ado) (i.e. one step down the hierarchy of moments). 

We repeat the use of the prescription, but now with 

u ( x , ~ )  = Ad0),  M ( x , ~ )  = 0, N(z,y) = 1--r G-. (6.6) ( 3 
Thus we define a new auxiliary function G?)(z,y) which satisfies the upstream 
advection-diffusion equation 

and 

This time (A 8) yields 
[G?)] = 0. ( 6 . 7 ~ )  

Combining together the results (6.1), (6.5), (6.8), we find that (2.12) withj = 2 yields 
the exact expression 

[d2)]  = 2 [ c ~ ~ ~ ] { ~ ~ a ~ d z ~ - [ G + G ~ ] , o + ( ~ ) x $  - 2 [ 6 c ( 1 ~ G ~ ] - 2 [ A c ( o ~ G ~ ~ ] .  (6.9) 

At large distances downstream the last two terms tend to zero. Thus the amended 
asymptotic expansion (5.3) for the temporal variance is 

(6.10) 

To compare the relative impacts of different discharge profiles q(yo) upon the 
concentration experienced far downstream, it suffices to evaluate the two auxiliary 
functions G-(x. y), G?)(z, y) (see figure 3). In  (6.10) the -2[G+G-] term tends to make 
the variance be less (and the concentrations higher) than the dispersion-coefficient 
prediction 

2 i:o !!$ dz’ (6.11) 

(Smith 1983). The negative contribution to CZ, can be attributed to the initial 
inefficiency of the shear-dispersion process close to the discharge (see figure 4). For 
the spatial moments Chatwin (1970, equation 4.9) was the first to quantify this deficit 
variance. I ts  influence upon the concentration only decays as the square root of 
time or of distance downstream. 
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0 . 2 5 1  

-0.051 " ' 1  1 ' I "  \ ' " ' I  " " 1  4 ' ' '  

0 0.2 0.4 0.6 0.8 1 .o 
Position across flow y / B  

FIQURE 3. Temporal variance contribution 2G'_2)-G? for a point discharge in a longitudinally 
uniform channel of triangular cross-section. 

Downstream distance 
FIGURE 4. Sketch of the x-dependence of the temporal variance, showing the initial inefficiency 

and eventual linear growth rak with distance. 

7. Importance of the monitoring position on the pollution level 

the advection-diffusion equation for Ad2) takes the form 
Using the decomposition (6.1) for A@, and the solution (4.4) for [c") ] ,  we find that 
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with 
hKayAd2) = 0 on y = Y L ~ Y R  ( 7 . l b )  

and 
Adz) = 0 at x = x0. ( 7 . 1 ~ )  

At large distance downstream the Ado) and forcing terms vanish. Thus we have 
the asymptot,e - 

Ad2) - 2[d0)] (F) G+ + 2[d0)] Gy),  (7.2) 
$0 

Time dependence 
* %  

FIQURE 5. An illustration that averaging introduces additional spreading 
(and reduces the peak). 

where the auxiliary function GY) satisfies the downstream advection-diffusion 
equation (cf. the equation (6 .7)  for G?)): 

with 

and 
hKa,GY) = 0 on y = yL,yR, 

[Gy)] = 0. 

(7.3b) 

(7.3c) 

The corresponding asymptotic result for the temporal variance a t  the location 
( X , Y )  is 

For a point discharge a t  the position (xo, yo) there is an obvious symmetry between 
the dependence of the temporal variance (rg upon the observation and discharge 
positions (see (9.2) below). I n  view of the comments at the beginning of $6 concerning 
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the magnitude of the discharge effect, the precise monitoring position is correspond- 
ingly important. As a general rule, the lowest pollution levels can be expected when 
the monitoring (or freshwater extraction) takes place near the bank (Smith 1981 ; 
Daish 1984). 

It deserves note that the flux-weighted average - [G:] of the final term in the above 
expression (7.4) is strictly negative. Thus the variance PT of the flux-averaged 
concentration given by (6.10) is larger than the non-averaged variance a$ (see figure 
5 ) .  However, the q-dependence is precisely the same for both FT and u$. 

8. An alternative definition of the shear-dispersion coefficient 
The definition (5.4) of the shear-dispersion coefficient Dloc is based upon the 

variance PT of the flux-averaged concentration [c]. The purpose of this section is to 
give an alternative definition. Dloc based upon the flux average of the y-dependent 
variance IT&. The relationship between Dloc and D,oc gives us insight into the 
occurrence of negative values of Dloc (Fukuoka & Sayre 1973). 

Starting from the result (7.4), we make use of the equations (4.8), (7.3) satisfied 
by G,, GP) to derive the advection4iffusion equation 

@.la) 

(8.lb) 

The strict positiveness of the right-hand-side forcing term in (8.1 a)  implies that 
there is a general tendency for a$ to grow downstream. Indeed, integrating ( 8 . 1 ~ )  
across the flow, we have 

with 

( 8 . 2 ~ )  

(8.2b) 

where Dloc is always positive. 

definitions (5.4), (8.2 b) of the local shear-dispersion coefficient are related : 
From the equation (4.8) satisfied by G+ we can deduce that the alternative 

D l O C  = Qoc +H a,[G:I. (8.3) 
Thus the condition for Dloc to become negative is that [G:] should strongly decrease 
downstream. What this means is that on average the displaced time of arrival G+(z, y) 
at  different stations across the flow should suddenly reduce. Instead of the contaminant 
peaks for different values of y being widely spread out, the contaminant peaks all 
arrive at very much the same time (see figure 5 ) ,  yielding a higher averaged 
concentration. 

At extremely large distances downstream the dispersion coefficient predictions 

( 8 . 4 ~ )  

(8.4b) 
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agree to within the order of the correction terms given in (6.10), (7.4).  So, a t  large 
enough distances, the choice of definition eventually becomes unimportant. 

We remark that the positivity of the cross-sectionally averaged growth rate az[u$] 
does not imply a universal property for all x ,y .  Cross-stream diffusion of u& (see 
( 8 . 1 ~ ) )  out of a region of high a& can locally give a downstream decrease in u&, and 
hence an increase in concentration along a streamline. Equivalently, if the shear- 
dispersion process had been comparatively efficient along a particular streamline, 
then the concentration would be low and diffusion from adjacent streamlines could 
increase the concentration. Hence, just as there can exist optimal discharge sites, 
there can be optimal extraction sites where the water has a minimum pollution level 
as compared with all nearby sites - even those slightly downstream. 

9. Point discharges 
If the discharge has the form 

YL 

YR 
m1m2hq = !$(Y-Y0)j m,m,hdy’, (9.1) 

then the asymptotic expansion (7 .4)  for the temporal variance a$ becomes 
- 

uZ, - 2 ~ ~ o ~ d x ~ + 2 G ~ ~ ( x o , y o ) - G ~ ( x o , y o ) 2  U1 

+ 2 3 dx’ + 2Gy)(x, y) - G+(x, y )’ - 2[G+ G-I,. (9.2) 
a u1 

Upstream of the arbitrary reference position x = a, we have made use of the result 
(4.11) to eliminate o+ in favour of g-. It is now straightforward to reverse the roles 
of the discharge and observation positions, and to ask for a fixed monitoring position 
(z, y) how does the temporal variance depend upon the choice of discharge site (xo ,  yo). 
As was noted at the end of $ 7 ,  when investigating the relative performance of different 
discharge sites ZZ, and a& can be used interchangeably. 

Making use of the equations (4.3), (6 .7)  satisfied by G- and G?), we obtain the 
upstream counterpart of (8.1): 

(9.3a) 

with 

(9.3b) 

where the coefficients m,, m2, ul, K,  G- are all to be evaluated a t  the discharge position 

As argued in §8, the strict positiveness of the forcing term in ( 9 . 3 ~ )  implies that  
there is an overall tendency for a$ to  grow upstream with respect to  xo. Thus, in 
accord with physical intuition, displacing the discharge further upstream gives more 
time for contaminant dispersion, and tends to reduce the concentrations experienced 
far downstream. 

Again we emphasize that the negativeness of a[u$]/axo (integrated with respect to 
yo) does not imply a universal property for all yo. For a sufficiently severe change 
in flow conditions, an upstream displacement can actually reduce a& (or equivalently 

(xo, Yo). 
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Cg). In  such a circumstance there is an optimal site for a point discharge such that 
small displacements in any direction necessarily increase the concentration a t  all 
positions far downstream (see 5 12 below). 

10. Skewness 
Substituting the asymptotic result (7.2) into (2.12) with j  = 3, we have 

[ C ( 3 ) ]  - 6[d0)]  (F)zo [Io 2 dx’ + 6[d0)]  flo dx’ + constant, (10.1) 

where the constant is associated with transient bc(2, contributions. 
The skew coefficient r for the weighted-average concentration [c )  is defined 

(10.2) 

Thus, using the above results (4.4), (5.1), ( l O . l ) ,  we find that r has the asymptote 

(10.3) 

Hence in a longitudinally uniform channel the decay of the skewness is at the slow 
rate (x-xo)-: (Tsai & Holley 1978, figure 12). 

Using the formula (A 8) given in Appendix A, with 

we can replace the GyI integral by one involving the product G, G- : 

The constraints 

[G,] = [G-] = 0 

(10.4) 

(10.5) 

(10.6) 

upon the auxiliary functions G,, G- imply that they will tend to be largest in 
magnitude where the velocity is low. This suggests that the integral (1 -ul/iil) G+G- 
is positive, and hence that the temporal skewness is positive (Nordin & Troutman 
1980). By contrast, spatial skewness can be positive (Aris 1956, equation 27) or 
negative (Jayaraj & Subramanian 1978, figures 3,4). The anomalous case of positive 
spatial skewness arises if there is a small region of high-speed low-shear fluid which 
induces a forward tail to the concentration distribution. 

1 1. Uniform channels 
For a longitudinally uniform channel (with m, = l ) ,  temporal and spatial moments 

provide alternative descriptions of the same concentration distribution c(x, y, t ) .  Thus, 
in this limiting case, the new temporal results for varying channels should be closely 
related to the known results for the spatial moments. With the odd moments we can 
expect a sign reversal between the temporal and spatial results (a late arrival 
corresponds to an upstream displacement). 
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In axes moving with the bulk velocity 5, the spatial centroid is displaced by an 
amount (Aris 1956, equation 24) : 

- 
X--+g(y) QS as t - t c o ,  (11.1) 

!i 

I / 
I 

Time dependence 

FIQURE 6. Sketch of the concentration at a fixed location as a function of time 
showing the rapid growth and slow decay. 

where the shape function g(y) satisfies the transverse diffusion equation 

with 

and 

(1 1.2a) 

(1 1.2 b )  

(1  1.2c) 

(Aris 1956, equation (39) ; Chatwin 1970, equation (1  .lo) ; Smith 1981, equation (4.2)). 
The formulae connecting the two functions g,  G- are 

(11.3) 

Of course, for longitudinally uniform channels, there is no distinction between 
upstream and downstream functions, i.e. G ,  = G-.  

As noted by Tsai & Holley (1978), there is a systematic discrepancy between this 
result (11.1) for the spatial centroid and the formula 

as (x-x,,)+m (11.4) 

for the temporal centroid. The difference (other than the obvious sign reversal) can 
be attributed to the fact that as the contaminant passes by the fixed location it is 
being continually dispersed. Thus there will be a relatively rapid increase in 
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concentration followed by a much slower decay (see figure 6). It is this tail which 
gives rise to the positive shift 2@/U of the temporal centroid, to increased temporal 
variance, and to the positive temporal skewness (Chatwin 1980, equation 14). 

The spatial variance for the flux-averaged concentration is given by 

(11.5) 

(Smith 1981, equation 4.10). The auxiliary function g(2) satisfies the equation 

a (kaYg(2)) = m,h{ug-(u-ii)g}, (1 1 . 6 ~ )  
m2 Y 

with 

and 
(11.6 b) 

(1 1 . 6 ~ )  

(Chatwin 1970, equation 2.12). The formulae connecting the functions g(2) and 
G?) = GP) are 

( 1 1.7 a) 

g(2) = 2 ( G y ) - v ) - 2 ( G  i -s i )- ug. (1 1.7 b) 

From equation (4.16) of Smith (1982), we infer that a t  a position y across the flow 
the spatial variance is given by 

(11.8) 

In  terms of g, g(2), the corresponding temporal result (7.4) can be written 

If we make the natural identification 

iit = x-xo-(g+7), (1 1 .lo) 

then far downstream the temporal variance (1 1.9) exceeds the spatial variance (1 1.8) 
bv an amount 

8(Ug)2 6(u-ii)g2 
- -- 

2 U 
(11.1 1) 

The leading term 8(ug)2/iP is in agreement with the one-dimensional diffusion 
calculation presented by Chatwin (1980, equation 14). The second term can be 
attributed to the effect of the persistent spatial skewness upon the temporal variance, 
e.g. negative spatial skewness with a drawn-out tail makes the temporal variance 
larger. Remarkably, Tsai & Holley (1980) were able to obtain the coefficient of 6 with 
an accuracy of 1 yo from their numerical solutions of the moment equations. 
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The spatial skewness has the asymptote 

6( u - U) g2 - (2Ug)Bti (1  1.12) 

(Chatwin 1970, equation 3.7), and can have either sign. From (10.5), (11.3), (11.7u), 
we find that at large distances downstream the temporal skewness is given by 

(1  1.13) 

The additional positive contribution to the skewness is precisely calculated by 
Chatwin (1980, equation 14). 

FIGURE 7.  A perspective view of the depth topography, with the position of maximum depth 
meandering from side to side of the channel. 

12. An illustrative example 
I n  this section numerical results are given for a periodically changing depth profile, 

with triangular cross-section, which fairly abruptly changes in its asymmetry from 
one side to the other (see figure 7) .  To modcl the flow velocity u and the transverse 
dispersion coefficient K we use the formulae 

(12.1) 
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(secAppendix B), where U, is the area-averaged friction velocity, and the quantities 
6, ht are area averages without the usual depth weighting. The numerical factor 0.15 
is based upon the experiments of Sumer (1976). The increase of u with hi means that 
in the profile transition region there is a pronounced shift of flow lines towards the 
deeper side (see figure 8). Despite this, we shall assume that the channel lengthscale 
is so much greater than the breadth scale that curvature is negligible : 

(For graphical convenience the figures have foreshortened longitudinal scales 
rivers are long and narrow.) 

I 

. \ _ _ . _  

. . . . . . . 
_ . _ . _ I  

. . . . . . . . I , , '  

12.2) 

Real 

Longitudinal position x / L  

FIGURE 8. The flow lines, showing the greater separation in shallower water. The 
widthscale is greatly exaggerated. 

Figure 9 shows contours of the time-lag function G- over a cycle length 2L of the 
periodically changing depth profile, with 

(12.3) 

It can be seen that the discharge site needs to  be well upstream of the transition region 
before the time lag approximates that for a longitudinally uniform channel (see figure 
2 ) .  For the upstream function G, the contours need to be inverted horizontally. 

Figure 10 shows contours of the quality 

(12.4) 
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with the reference position x,, = a at the centre. This measures the dependence of the 
variance upon the siting of a point discharge (see (9.2)). Well upstream of the 
transition region the tilting of the contours shows that it is best to make a sudden 
contaminant release at  the shallow bank (see figure 3). The closed contours just 
upstream of the transition region reveal the remarkable feature that there is an 
optimal discharge site. To achieve a greater contribution to the variance, the 
discharge would need to be moved well upstream. The optimal site can be regarded 
as taking as much advantage as possible of the downstream region along the shallow 
bank of low velocity and high shear in which the shear-dispersion process is at its 
most efficient. 

Longitudinal position x / L  

FIGURE 9. Contours of the non-dimensional time lag CT_hii,/B2 as a function of discharge 
position, showing the later arrival when the discharge is situated at the shallow bank. 

For the dependence of the variance upon the monitoring position the appropriate 
measure is 

(12.5) 

(see (9.2)). For the particular depth topography being studied here, the contours are 
the horizontal inversion of those given in figure 10. Therefore the closed contours arise 
just downstream of the transition region, and indicate the presence of an optimal site 
for the extraction of water from the river, i.e. advantage is taken of the protection 
afforded by the efficient dilution along the upstream region of shallow water. 

We remark that there is not a worst position for water extraction (nor a worst 
discharge site). The diffusive character of the dispersion process ensure that as the 
contaminant is carried downstream the overall peak concentration decays. For each 
cross-section there is a constrained worst position, but there is improvement if 
downstream displacement is permitted. It is the shifting from side to side of the 
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channel of these constrained worst positions that cut off the high-rg contours and 
gives rise to the existence of optimal sites. 

This work was supported by the Royal Society through the award of a Research 
Fellowship in the Physical Sciences. 

, ...__. 

Longitudinal position x / L  

FIGURE 10. Contours of the non-dimensional contribution to the variance associated with the precise 
location of the contaminant release site. The optimal sites are just upstream of the stretches of 
shallow water. 

Appendix A. Evaluation of some integrals 
Consider the pair of downstream and upstream adveotion-cliffusion equations 

m, m, hu, a,a-i3,(2 hK a, a) = ( M - B ? )  m, mz h, 

m,m,hu,a,b+a, 

hKa,a=hKa,b=O on Y = Y L , Y R .  (A 1 4  

Depending upon the forcing terms M ,  N ,  the function a(x, y) could be any one of Ado), 
G,, W), ..., while b ( z ,  y) could be G-, G?, .... 

The area averages of (A 1 a) ,  (A 1 b )  yield the equations 

a,[a] = a,[b] = 0, (A 2) 

where the flux-weighted averages [ . . . I  are defined by (2.9). Thus the quantities [a], 
[b] can be evaluated at the discharge site xo. 
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Multiplying (A 1 a )  by b(x, y), and (A 1 b )  by a(x, y),  taking the sum and integrating 
across the flow, we obtain the equation 

a ~ ~ b ]  = a- ~ [ b ]  + - ~ a .  (A 3) 
Performing a further integration with respect to x we arrive a t  the result 

Suppose, as repeatedly happens in the above analysis, we need to evaluate an 
integral of the form 

- dx’, 

where N ( z ,  y) is specified (e.g. N = 1)  and a ( z ,  y) satisfies a downstream advection- 
diffusion equation of the form (A 1 a) .  From (A 1 b )  the forcing N(x, y)  defines an 
auxiliary function b(x, y),  where without loss of generality we can choose 

[b] = 0. (A 6) 

b I x o  = 0. (A 7) 

Typically, the initial conditions or the forcing term in (A 1 a )  are also such that 

When all these conditions (A 6) ,  (A 7) apply, the result (A 4) acts as a reduction 
formula, replacing the %-integral by the lower-order =-integral : 

If the component terms of M(x, y) (e.g. Ado)) themselves satisfy an advection-diffusion 
equation of the form (A 1 a) ,  then the process can be repeated until an explicit formula 
is obtained. 

Appendix B. The transverse shear in a shallow stream 
I n  a shallow stream the velocity gradient, and hence the transfer of momentum, 

is primarily vertical. For vertical mixing (of mass or momentum) the upstream 
memory lengthscale is only of the order of 40 water depths. Thus in the momentum 
equation i t  is reasonable to neglect both transverse diffusion and longitudinal 
advection : 

with 

and 

a, u) = -8, P, 
u = O  on z = - h ,  

va,u=O on z = O ,  

where v is the eddy viscosity. 
The pressure gradient a x p  cannot vary very much across the flow, as otherwise 

i t  would drive a bulk cross-flow and the axes would be realigned accordingly. Hence 
we can infer from (B l a )  that  the velocity has the form 

u = -a(;), h2 
II 41 

where J J v ( (  is the vertically averaged eddy viscosity, and the shape function s (z /h)  
describes the detailed velocity profile. 
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In  constant-depth open-channel flows it has repeatedly been verified that the eddy 
diffusivities for momentum and for mass scale as the product hu, of the depth h and 
friction velocity u* (Elder 1959; Sumer 1976). If we assume that the upstream memory 
and cross-stream diffusion of the turbulence can be neglected, then this local 
modelling for v enables us to modify the representation (B 2) : 

h 
u* 

The turbulence is generated by the flow past the roughness elements on the bed 
(or by instability of the flow). This leads to proportionality between u* and ((u((, the 
precise ratio depending weakly upon the roughness height. Again, assuming a local 
response, we infer that u varies as h!: 

u a his(:). 

It then follows that the friction velocity u* varies as hi and the eddy diffusivities v ,  
K as hg. 

The weakest point in the above argument is in the neglect of cross-stream 
influences. Fischer (1969) showed that when there are bends the centrifugal effect 
leads to secondary flows which greatly augment the cross-stream diffusion of mass. 
Empirically this can be accounted for by increasing the coefficient 0.15 in equation 
(12.1) for K. For example, the author (Smith 1983, equation 10.3) has used the formula 

where the Fischer number F ( x )  depends upon the curvature of the channel : 
2 

F = 200(&1)~(:) 

Although the radius of curvature 1 / p  is several orders of magnitude greater than the 
water depth, the large values of the factors 200 and can make F be of order 
unity. 
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